杂质对焊缝金属的性能的金属焊接性有十分重要的影响,其中影响较大的有害元素主要有S、P、N、H、O等。
硫(S):是由生铁及燃料带入钢中的杂质。S在钢中几乎不能溶解,而与铁形成化合物,在钢中以FeS形式存在,FeS与Fe形成熔点较低的共晶体(熔点为9850C)。当钢在12000C左右进行热加工时,分布于晶界的低熔点共晶体将因熔化而导致开裂,为种现象称为热脆性。 为了消除S的有害作用,必须增加钢中的Mn含量。Mn与S可优先形成高熔点的MnS(熔点为16200C),而且MnS呈颗粒分布于晶粒内,比钢材热加工温度高,从而避免了热脆性的发生。
磷(P):是由生铁带入钢中的。P比其它元素具有更强的固溶强化能力室温时P在α-Fe中的溶解度大约略小于0.1%。在一般情况下,钢中的P能全部溶于铁素体中,使钢的强度、硬度提高,塑性、韧性则显著降低,尤其是在低温时更为严重,为种现象称为冷脆性。 P在结晶过程中有严重的偏析倾向,从而在局部发生冷脆,并使钢材在热轧后出现带状组织,而且P在γ-Fe及α-Fe中的扩散速度很小,很难用热处理方法消除P的偏析。
氮(N):是由炉气进入钢中。N在奥氏体中的溶解度较大,而在铁素体中的溶解度很小,且随着温度的下降而减小,在5900C时溶解度为0.1%,室温时则降至0.001%以下,当钢材由高温较快冷却时,过剩的N由于来不及析出便过饱和地溶解在铁素体中。随后在2000C~2500C加热(或者钢材在室温下静臵,随着时间的延长),将会发生氮化物Fe4N的析出,使钢的强度、硬度上升,而塑性、韧性大大降低,为种现象称为蓝脆(时效脆性)。 在钢液中加入Al、Ti进行脱N处理,使N固定在AlN及TiN中,可以消除钢的时效倾向。
氢(H):炼钢炉料和浇注系统带有水分或由于空气潮湿,都会使钢中的H含量增加。H是钢中的有害元素,钢中含H将使钢材变脆,称为氢脆。H还会使钢中出现白点等缺陷,这种现象在合金钢中尤为严重。 焊接时H主要来源于焊接材料中的水分、电弧周围空气中的水蒸气、母材坡口表面的铁锈、油污等。
氧(O):在钢中部分溶入铁素体,另一部分以金属氧化物夹杂形式存在于钢中。O以金属氧化物形式存在于非金属夹杂物中时,对钢的性能有不良的影响。O含量增加会使钢的强度、塑性降低。氧化物夹杂对钢的力学性能(尤其是疲劳强度)有严重的影响,钢中的FeO与其它夹杂物形成低熔点的复合化合物聚集在晶界上时,会造成钢的热脆性。
焊缝金属和钢中所含的O几乎全部以氧化物(FeO、SiO2、MnO、Al2O3等)和硅酸盐夹杂物的形式存在。焊缝含0量一般是指总含O量,它既包括溶解的O,也包括非金属夹杂物中的O。焊接低碳及低合金钢时,尽管母材和焊丝的含O量很低,但是由于金属与气相和熔渣作用的结果,焊缝金属的含O量总是增加的。